69 research outputs found

    Terrestrial–marine connectivity: patterns of terrestrial soil carbon deposition in coastal sediments determined by analysis of glomalin related soil protein

    Get PDF
    Glomalin, an arbuscular mycorrhizal protein component of soil, can be used as an indicator of terrigenous-derived carbon. We measured glomalin in sediments using the terrestrial end-member as a reference in four coastal settings: (1) intertidal seagrass meadows distributed over a rainfall gradient, (2) sediments inshore and offshore from the mouth of a river, (3) coastal coral reefs at various distances from the shore, and (4) intertidal wetlands with varying levels of groundwater influence. Across the rainfall gradient, glomalin in seagrass meadow sediments increased at sites with high mean annual rainfall during the wet season (r(2) = 0.27; F-1,F-29 = 5.75; p = 0.029). Glomalin decreased in inshore river sediments (terrestrial) to offshore (marine) sediments (r(2) = 0.81; F-1,F-17 = 71.7;

    Disentangling thermal stress responses in a reef-calcifier and its photosymbionts by shotgun proteomics

    Get PDF
    This project was funded by the Leibniz Association (SAW-2014-ISAS-2) awarded to AS and HW and supported by the Ministerium fĂŒr Kultur und Wissenschaft des Landes Nordrhein-Westfalen, the Regierende BĂŒrgermeister von Berlin - inkl. Wissenschaft und Forschung, and the Bundesministerium fĂŒr Bildung und Forschung. Sampling was conducted under the Research Permit No. FKNMS-2015–026, issued to Pamela Hallock who is warmly acknowledged for her general support and assistance during fieldwork.Peer reviewedPublisher PD

    Shallow-water Benthic Foraminifera of the GalĂĄpagos Archipelago: Ecologically Sensitive Carbonate Producers in an Atypical Tropical Oceanographic Setting

    Get PDF
    Coral reefs are currently exposed to a number of anthropogenic pressures worldwide. With ocean warming and acidification expected to continue in the near future, it is important to study coral environments within natural oceanographic gradients, particularly with respect to their effects on environmental indicator species. Benthic foraminifera are sensitive to environmental change, making them ideal indicators of reef water quality and health. Hence, we studied benthic foraminifera from samples collected throughout the GalĂĄpagos Archipelago, an equatorial island chain strongly influenced by the El Niño–Southern Oscillation (ENSO) and deep water upwelling—resulting in an atypical natural temperature, nutrient, and pH transition zone throughout the tropical latitudes of the archipelago. While foraminiferal abundances averaged 0.7% of all sand-sized carbonate grains, assemblages were characterized by a total of 161 species in 72 genera. The northern archipelago was dominated by Miliolida and contained the highest percentages of symbiont-bearing taxa in the GalĂĄpagos. However, the archipelago as a whole strongly favored heterotrophic Rotaliida, particularly throughout the southern islands, which are directly impacted by high nutrient and low pH upwelling from the Equatorial Undercurrent (EUC). While the Eastern Tropical Pacific does not show the diversity of its western counterpart, GalĂĄpagos foraminiferal assemblages revealed a relatively high foraminiferal diversity for the region as well as evidence in support of earlier reports of high endemism within the archipelago

    Variable El Niño-Southern Oscillation influence on biofacies dynamics of eastern Pacific shallow-water carbonate systems

    Get PDF
    The El Niño-Southern Oscillation (ENSO) is a periodic climatic and oceanic event caused by sea-surface temperature and nutrient anomalies over the eastern tropical Pacific Ocean (ETP). Recurring ENSO events have a significant impact on climate and the ecosystems of the circum-Pacific region. In the marine realm, ENSO is known for altering temperature and nutrient patterns, affecting the pelagic food chain, and causing widespread bleaching of corals due to temperature stress. The potential impacts of ENSO on shallow benthic ecosystems as a whole, however, are poorly understood. Here, we compared biogenic sedimentary facies of ETP shallow-water carbonate systems in a strongly ENSO-influenced area (Galåpagos Islands, Ecuador [GAL]) with similar systems in an area less stronglyinfluenced by ENSO (Gulf of California, Mexico [GOC]). Carbonate assemblages in both study regions range from coral-algal-dominated (photozoan) to molluscan-dominated (heterozoan) assemblages. Linear statistical models, comparing the distribution of carbonates against prominent local oceanographic parameters, show that minimum chlorophyll-a and maximum sea-surface temperature (which are both strongly influenced by ENSO) are dominant drivers shaping carbonate sediment facies in the GAL. In contrast, GOC carbonates have a distinct mean chlorophyll-a signature that is the result of anupwelling-induced north-south nutrient gradient not significantly influenced by ENSO

    Thermal stress reduces pocilloporid coral resilience to ocean acidification by impairing control over calcifying fluid chemistry

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Guillermic, M., Cameron, L. P., De Corte, I., Misra, S., Bijma, J., de Beer, D., Reymond, C. E., Westphal, H., Ries, J. B., & Eagle, R. A. Thermal stress reduces pocilloporid coral resilience to ocean acidification by impairing control over calcifying fluid chemistry. Science Advances, 7(2), (2021): eaba9958, https://doi.org/10.1126/sciadv.aba9958.The combination of thermal stress and ocean acidification (OA) can more negatively affect coral calcification than an individual stressors, but the mechanism behind this interaction is unknown. We used two independent methods (microelectrode and boron geochemistry) to measure calcifying fluid pH (pHcf) and carbonate chemistry of the corals Pocillopora damicornis and Stylophora pistillata grown under various temperature and pCO2 conditions. Although these approaches demonstrate that they record pHcf over different time scales, they reveal that both species can cope with OA under optimal temperatures (28°C) by elevating pHcf and aragonite saturation state (Ωcf) in support of calcification. At 31°C, neither species elevated these parameters as they did at 28°C and, likewise, could not maintain substantially positive calcification rates under any pH treatment. These results reveal a previously uncharacterized influence of temperature on coral pHcf regulation—the apparent mechanism behind the negative interaction between thermal stress and OA on coral calcification.R.A.E. and J.B.R. acknowledge support from National Science Foundation grants OCE-1437166 and OCE-1437371. The work was also supported by the “Laboratoire d’Excellence” LabexMER (ANR-10-LABX-19), cofunded by a grant from the French government under the program “Investissements d’Avenir,” and an IAGC student grant 2017. R.A.E. acknowledges financial and logistical support from the Pritzker Endowment to UCLA IoES, and J.B.R. acknowledges support from the ZMT and the Hanse-Wissenschaftskolleg Fellowship Program and the NSF OCE award #1437371

    European policies and legislation targeting ocean acidification in european waters - Current state

    Get PDF
    Ocean acidification (OA) is a global problem with profoundly negative environmental, social and economic consequences. From a governance perspective, there is a need to ensure a coordinated effort to directly address it. This study reviews 90 legislative documents from 17 countries from the European Economic Area (EEA) and the UK that primarily border the sea. The primary finding from this study is that the European national policies and legislation addressing OA is at best uncoordinated. Although OA is acknowledged at the higher levels of governance, its status as an environmental challenge is greatly diluted at the European Union Member State level. As a notable exception within the EEA, Norway seems to have a proactive approach towards legislative frameworks and research aimed towards further understanding OA. On the other hand, there was a complete lack of, or inadequate reporting in the Marine Strategy Framework Directive by the majority of the EU Member States, with the exception of Italy and the Netherlands. We argue that the problems associated with OA and the solutions needed to address it are unique and cannot be bundled together with traditional climate change responses and measures. Therefore, European OA-related policy and legislation must reflect this and tailor their actions to mitigate OA to safeguard marine ecosystems and societies. A stronger and more coordinated approach is needed to build environmental, economic and social resilience of the observed and anticipated changes to the coastal marine systems

    Impacts of Warming and Acidification on Coral Calcification Linked to Photosymbiont Loss and Deregulation of Calcifying Fluid pH

    Get PDF
    Corals are globally important calcifiers that exhibit complex responses to anthropogenic warming and acidification. Although coral calcification is supported by high seawater pH, photosynthesis by the algal symbionts of zooxanthellate corals can be promoted by elevated pCO2. To investigate the mechanisms underlying corals’ complex responses to global change, three species of tropical zooxanthellate corals (Stylophora pistillata, Pocillopora damicornis, and Seriatopora hystrix) and one species of asymbiotic cold-water coral (Desmophyllum pertusum, syn. Lophelia pertusa) were cultured under a range of ocean acidification and warming scenarios. Under control temperatures, all tropical species exhibited increased calcification rates in response to increasing pCO2. However, the tropical species’ response to increasing pCO2 flattened when they lost symbionts (i.e., bleached) under the high-temperature treatments—suggesting that the loss of symbionts neutralized the benefit of increased pCO2 on calcification rate. Notably, the cold-water species that lacks symbionts exhibited a negative calcification response to increasing pCO2, although this negative response was partially ameliorated under elevated temperature. All four species elevated their calcifying fluid pH relative to seawater pH under all pCO2 treatments, and the magnitude of this offset (Δ[H+]) increased with increasing pCO2. Furthermore, calcifying fluid pH decreased along with symbiont abundance under thermal stress for the one species in which calcifying fluid pH was measured under both temperature treatments. This observation suggests a mechanistic link between photosymbiont loss (‘bleaching’) and impairment of zooxanthellate corals’ ability to elevate calcifying fluid pH in support of calcification under heat stress. This study supports the assertion that thermally induced loss of photosymbionts impairs tropical zooxanthellate corals’ ability to cope with CO2-induced ocean acidification

    Energy Resolution Performance of the CMS Electromagnetic Calorimeter

    Get PDF
    The energy resolution performance of the CMS lead tungstate crystal electromagnetic calorimeter is presented. Measurements were made with an electron beam using a fully equipped supermodule of the calorimeter barrel. Results are given both for electrons incident on the centre of crystals and for electrons distributed uniformly over the calorimeter surface. The electron energy is reconstructed in matrices of 3 times 3 or 5 times 5 crystals centred on the crystal containing the maximum energy. Corrections for variations in the shower containment are applied in the case of uniform incidence. The resolution measured is consistent with the design goals

    Rapid bioerosion in a tropical upwelling coral reef

    Get PDF
    Coral reefs persist in an accretion-erosion balance, which is critical for understanding the natural variability of sediment production, reef accretion, and their effects on the carbonate budget. Bioerosion (i.e. biodegradation of substrate) and encrustation (i.e. calcified overgrowth on substrate) influence the carbonate budget and the ecological functions of coral reefs, by substrate formation/consolidation/erosion, food availability and nutrient cycling. This study investigates settlement succession and carbonate budget change by bioeroding and encrusting calcifying organisms on experimentally deployed coral substrates (skeletal fragments of Stylophora pistillata branches). The substrates were deployed in a marginal coral reef located in the Gulf of Papagayo (Costa Rica, Eastern Tropical Pacific) for four months during the northern winter upwelling period (December 2013 to March 2014), and consecutively sampled after each month. Due to the upwelling environmental conditions within the Eastern Tropical Pacific, this region serves as a natural laboratory to study ecological processes such as bioerosion, which may reflect climate change scenarios. Time-series analyses showed a rapid settlement of bioeroders, particularly of lithophagine bivalves of the genus Lithophaga/ Leiosolenus (Dillwyn, 1817), within the first two months of exposure. The observed enhanced calcium carbonate loss of coral substrate (>30%) may influence seawater carbon chemistry. This is evident by measurements of an elevated seawater pH (>8.2) and aragonite saturation state (Ωarag >3) at Matapalo Reef during the upwelling period, when compared to a previous upwelling event observed at a nearby site in distance to a coral reef (Marina Papagayo). Due to the resulting local carbonate buffer effect of the seawater, an influx of atmospheric CO2 into reef waters was observed. Substrates showed no secondary cements in thin-section analyses, despite constant seawater carbonate oversaturation (Ωarag >2.8) during the field experiment. Micro Computerized Tomography (ÎŒCT) scans and microcast-embeddings of the substrates revealed that the carbonate loss was primarily due to internal macrobioerosion and an increase in microbioerosion. This study emphasizes the interconnected effects of upwelling and carbonate bioerosion on the reef carbonate budget and the ecological turnovers of carbonate producers in tropical coral reefs under environmental change.Sistema Nacional de Áreas de ConservaciĂłn/[028-2013-SINAC]/SINAC/Costa RicaSistema Nacional de Áreas de ConservaciĂłn/[72-2013-SINAC]/SINAC/Costa RicaUCR::VicerrectorĂ­a de InvestigaciĂłn::Unidades de InvestigaciĂłn::Ciencias BĂĄsicas::Centro de InvestigaciĂłn en Ciencias del Mar y LimnologĂ­a (CIMAR
    • 

    corecore